Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.319
Filtrar
1.
Cell Rep ; 43(4): 114095, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613787

RESUMO

Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.


Assuntos
Regulação para Baixo , Ribonucleoproteínas , Canais de Cátion TRPV , Ubiquitinação , Animais , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Camundongos , Ribonucleoproteínas/metabolismo , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Células HEK293 , Camundongos Knockout , Células Mieloides/metabolismo , Viroses/metabolismo
2.
J Nanobiotechnology ; 22(1): 175, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609947

RESUMO

Nonviral delivery of the CRISPR/Cas9 system provides great benefits for in vivo gene therapy due to the low risk of side effects. However, in vivo gene editing by delivering the Cas9 ribonucleoprotein (RNP) is challenging due to the poor delivery into target tissues and cells. Here, we introduce an effective delivery method for the CRISPR/Cas9 RNPs by finely tuning the formulation of ionizable lipid nanoparticles. The LNPs delivering CRISPR/Cas9 RNPs (CrLNPs) are demonstrated to induce gene editing with high efficiencies in various cancer cell lines in vitro. Furthermore, we show that CrLNPs can be delivered into tumor tissues with high efficiency, as well as induce significant gene editing in vivo. The current study presents an effective platform for nonviral delivery of the CRISPR/Cas9 system that can be applied as an in vivo gene editing therapeutic for treating various diseases such as cancer and genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Lipossomos , Nanopartículas , Linhagem Celular , Ribonucleoproteínas/genética
3.
Sci Adv ; 10(16): eadl4336, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630829

RESUMO

Developing protein drugs that can target intracellular sites remains a challenge due to their inadequate membrane permeability. Efficient carriers for cytosolic protein delivery are required for protein-based drugs, cancer vaccines, and CRISPR-Cas9 gene therapies. Here, we report a screening process to identify highly efficient materials for cytosolic protein delivery from a library of dual-functionalized polymers bearing both boronate and lipoic acid moieties. Both ligands were found to be crucial for protein binding, endosomal escape, and intracellular protein release. Polymers with higher grafting ratios exhibit remarkable efficacies in cytosolic protein delivery including enzymes, monoclonal antibodies, and Cas9 ribonucleoprotein while preserving their activity. Optimal polymer successfully delivered Cas9 ribonucleoprotein targeting NLRP3 to disrupt NLRP3 inflammasomes in vivo and ameliorate inflammation in a mouse model of psoriasis. Our study presents a promising option for the discovery of highly efficient materials tailored for cytosolic delivery of specific proteins and complexes such as Cas9 ribonucleoprotein.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Técnicas de Transferência de Genes , Terapia Genética , Polímeros/química , Ribonucleoproteínas/genética
4.
Sci Immunol ; 9(93): eado6826, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427719

RESUMO

Xist-containing ribonucleoproteins drive autoimmunity in women.


Assuntos
Autoimunidade , Ribonucleoproteínas , Humanos , Feminino
5.
Nat Commun ; 15(1): 1818, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443394

RESUMO

Control of CRISPR/Cas12a trans-cleavage is crucial for biosensor development. Here, we show that small circular DNA nanostructures which partially match guide RNA sequences only minimally activate Cas12a ribonucleoproteins. However, linearizing these structures restores activation. Building on this finding, an Autocatalytic Cas12a Circular DNA Amplification Reaction (AutoCAR) system is established which allows a single nucleic acid target to activate multiple ribonucleoproteins, and greatly increases the achievable reporter cleavage rates per target. A rate-equation-based model explains the observed near-exponential rate trends. Autocatalysis is also sustained with DNA nanostructures modified with fluorophore-quencher pairs achieving 1 aM level (<1 copy/µL) DNA detection (106 times improvement), without additional amplification, within 15 min, at room temperature. The detection range is tuneable, spanning 3 to 11 orders of magnitude. We demonstrate 1 aM level detection of SNP mutations in circulating tumor DNA from blood plasma, genomic DNA (H. Pylori) and RNA (SARS-CoV-2) without reverse transcription as well as colorimetric lateral flow tests of cancer mutations with ~100 aM sensitivity.


Assuntos
Helicobacter pylori , Nanoestruturas , DNA Circular/genética , RNA/genética , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , DNA/genética , Ribonucleoproteínas
6.
J Proteome Res ; 23(4): 1370-1378, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472149

RESUMO

Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.


Assuntos
Proteômica , Ribonucleoproteínas , Camundongos , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Formaldeído
8.
Planta ; 259(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448635

RESUMO

MAIN CONCLUSION: A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.


Assuntos
Dianthus , Oxigenases , Humanos , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Melhoramento Vegetal , Eletroporação , Ribonucleoproteínas
9.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38477883

RESUMO

The high-density lipoprotein binding protein (HDLBP) is the human member of an evolutionarily conserved family of RNA-binding proteins, the vigilin protein family. These proteins are characterized by 14 or 15 RNA-interacting KH (heterologous nuclear ribonucleoprotein K homology) domains. While mainly present at the cytoplasmic face of the endoplasmic reticulum, HDLBP and its homologs are also found in the cytosol and nucleus. HDLBP is involved in various processes, including translation, chromosome segregation, cholesterol transport and carcinogenesis. Especially, its association with the latter two has attracted specific interest in the HDLBP's molecular role. In this review, we give an overview of some of the functions of the protein as well as introduce its impact on different kinds of cancer, its connection to lipid metabolism and its role in viral infection. We also aim at addressing the possible use of HDLBP as a drug target or biomarker and discuss its future implications.


Assuntos
Neoplasias , Proteínas de Ligação a RNA , Humanos , Ribonucleoproteínas , Lipoproteínas HDL
10.
STAR Protoc ; 5(1): 102940, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460133

RESUMO

The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Bovinos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas , RNA/genética , Eletroporação/métodos , DNA/genética , Ribonucleoproteínas/genética
11.
Adv Exp Med Biol ; 3234: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507196

RESUMO

Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.


Assuntos
Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Imunoprecipitação
12.
Adv Exp Med Biol ; 3234: 17-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507197

RESUMO

Throughout their entire life cycle, RNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions and very diverse functions in RNA metabolism, including splicing, translational regulation, ribosome assembly. Many RNPs remain poorly characterized due to the challenges inherent in their purification and subsequent biochemical characterization. Therefore, developing methods to isolate specific RNA-protein complexes is an important initial step toward understanding their function. Many elegant methodologies have been developed to isolate RNPs. This chapter describes different approaches and methods devised for RNA-specific purification of a target RNP. We focused on general methods for selecting RNPs that target a given RNA under conditions favourable for the copurification of associated factors including RNAs and protein components of the RNP.


Assuntos
RNA , Ribonucleoproteínas , RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteômica
13.
Proc Natl Acad Sci U S A ; 121(11): e2307796121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437567

RESUMO

Cell-type-specific in vivo delivery of genome editing molecules is the next breakthrough that will drive biological discovery and transform the field of cell and gene therapy. Here, we discuss recent advances in the delivery of CRISPR-Cas genome editors either as preassembled ribonucleoproteins or encoded in mRNA. Both strategies avoid pitfalls of viral vector-mediated delivery and offer advantages including transient editor lifetime and potentially streamlined manufacturing capability that are already proving valuable for clinical use. We review current applications and future opportunities of these emerging delivery approaches that could make genome editing more efficacious and accessible in the future.


Assuntos
Comércio , Edição de Genes , Terapia Genética , RNA Mensageiro , Ribonucleoproteínas
14.
Sci Adv ; 10(10): eadm7435, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446881

RESUMO

Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.


Assuntos
Condensados Biomoleculares , Preservação Biológica , 60422 , RNA , Ribonucleoproteínas
15.
Nat Commun ; 15(1): 1727, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409124

RESUMO

The delivery of CRISPR ribonucleoproteins (RNPs) for genome editing in vitro and in vivo has important advantages over other delivery methods, including reduced off-target and immunogenic effects. However, effective delivery of RNPs remains challenging in certain cell types due to low efficiency and cell toxicity. To address these issues, we engineer self-deliverable RNPs that can promote efficient cellular uptake and carry out robust genome editing without the need for helper materials or biomolecules. Screening of cell-penetrating peptides (CPPs) fused to CRISPR-Cas9 protein identifies potent constructs capable of efficient genome editing of neural progenitor cells. Further engineering of these fusion proteins establishes a C-terminal Cas9 fusion with three copies of A22p, a peptide derived from human semaphorin-3a, that exhibits substantially improved editing efficacy compared to other constructs. We find that self-deliverable Cas9 RNPs generate robust genome edits in clinically relevant genes when injected directly into the mouse striatum. Overall, self-deliverable Cas9 proteins provide a facile and effective platform for genome editing in vitro and in vivo.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Encéfalo/metabolismo
16.
Acta Biomater ; 178: 296-306, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417646

RESUMO

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA , Ribonucleoproteínas/genética , Lactatos , Glucose , Neoplasias/genética , Neoplasias/terapia
17.
Methods Mol Biol ; 2770: 123-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351451

RESUMO

Gene editing in the murine germline is a valuable approach to investigate germ cell maturation and generate mouse models. Several studies demonstrated that CRISPR/Cas9 alters the genome of cultured male mouse germline stem cells delivered by electroporation of plasmids. Recently, we showed proof-of-principle that gene knockout can be effectively targeted in mouse germline stem cells by lipofecting Cas9:gRNA ribonucleoproteins. In this protocol, we describe a simple, fast, and cheap workflow for gene editing via the lipofection of non-integrative ribonucleoproteins in murine male germline stem cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Células Germinativas/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338898

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a revolutionary tool for precise genome editing across various cell types. Ribonucleoproteins (RNPs), encompassing the Cas9 protein and guide RNA (gRNA), have emerged as a promising technique due to their increased specificity and reduced off-target effects. This method eliminates the need for plasmid DNA introduction, thereby preventing potential integration of foreign DNA into the target cell genome. Given the requirement for large quantities of highly purified protein in various Cas9 studies, we present an efficient and simple method for the preparation of recombinant Streptococcus pyogenes Cas9 (SpCas9) protein. This method leverages the Small Ubiquitin Like Modifier(SUMO) tag system, which includes metal-affinity chromatography followed by anion-exchange chromatography purification. Furthermore, we compare two methods of CRISPR-Cas9 system delivery into cells: transfection with plasmid DNA encoding the CRISPR-Cas9 system and RNP transfection with the Cas9-gRNA complex. We estimate the efficiency of genomic editing and protein lifespan post-transfection. Intriguingly, we found that RNP treatment of cells, even in the absence of a transfection system, is a relatively efficient method for RNP delivery into cell culture. This discovery is particularly promising as it can significantly reduce cytotoxicity, which is crucial for certain cell cultures such as induced pluripotent stem cells (iPSCs).


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , DNA
19.
Semin Arthritis Rheum ; 65: 152407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377624

RESUMO

OBJECTIVE: In idiopathic inflammatory myopathies, anti-SSa/SSb and anti-Ro52 are associated with interstitial lung disease (ILD), yet few studies have compared their prognostic utility. Our study analyzes clinical phenotypes associated with anti-SSa/SSb and anti-Ro52 positivity in IIM and their association with ILD. METHODS: We performed a retrospective analysis of IIM patients >18-years-old, seen at Northwell Myositis Center 2007- 2018 who met 2017 EULAR/ACR criteria with available anti-SSa/SSb data. Patients who were anti-SSa/SSb(-) and anti-Ro52(+) were excluded from anti-SSa/SSb subgroup analysis but included in Ro52 subgroup analysis. Organ manifestations, pulmonary function tests (PFTs) and comorbidities were recorded. Statistical analyses included Chi-square, Fisher's Exact, Wilcoxon Rank Sum, McNemar's test. RESULTS: Of 94 patients included in the final analysis, 35% (33/94) were anti-SSa/SSb positive (+). Of 60 patients with anti-Ro52 data, 42% (25/60) were (+). ILD was more common in anti-SSa/SSb (+) versus anti-SSa/SSb negative patients and anti-Ro52(+) versus anti-Ro52 negative patients (58% vs 25%; p = 0.003 and 64% vs.26%; p = 0,004 respectively). Anti-SSa/SSb (+) was not associated with increased ILD severity based on PFTs. Anti-Ro52(+) group had lower DLCO than anti-Ro52(-) (47% vs 68%; p = 0.003). Anti-SSa/SSb positivity did not confer a difference in the frequency of other manifestations. Elevated rates of venous thromboembolism (VTE) (10%-12%) and osteoporosis (13-17%) were observed independent of anti-SSa/SSb or anti-Ro52 status. CONCLUSION: In IIM anti-SSa/SSb or anti-Ro52 positivity is associated with higher ILD rate. Both assays are useful to confer ILD risk, but anti-Ro52 is more predictive of severe ILD. High frequencies of osteoporosis and VTE were observed in all subgroups.


Assuntos
Doenças Pulmonares Intersticiais , Miosite , Osteoporose , Tromboembolia Venosa , Humanos , Adolescente , Autoanticorpos , Estudos Retrospectivos , Ribonucleoproteínas , Fenótipo
20.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...